

Analyzing with P-Delta

Presenter: Deborah Penko, P.E.

What?

Why?

When?

How?

P-Delta?

Definition:

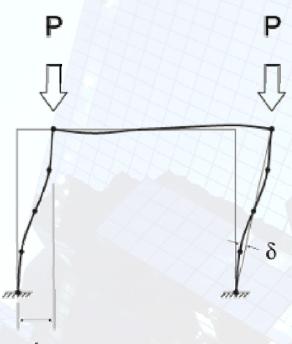
Destabilizing moment equal to the force of gravity multiplied by the horizontal displacement a structure undergoes as a result of a lateral displacement.

P (Force of Gravity) x Delta (Horizontal Displacement)

What is P-Delta Effect?

Step 1: Model deflects Δ

Step 2: Secondary shear force (V) calculated


 $P*\Delta = V*L \longrightarrow V= \frac{P*\Delta}{L}$

Step 3: Model is re-solved with V applied

Step 4: Iterate until the model converges

What is P-Delta in RISA?

P- δ **Little P-Delta :** curvature of the element

RISA Implementation:

Add Intermediate Joints to the element

What is little P-Delta?

P-Delta Required by Code

ightharpoonup AISC 13th & 14th Edition- Design for Stability ightharpoonup Direct Analysis Method Second Order Analysis (P- Δ, P- δ)

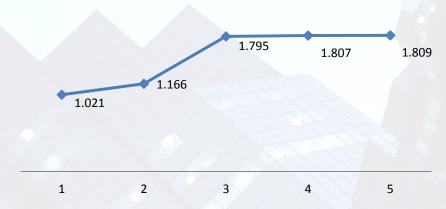
>ACI 2008 & ACI 2012

Nonlinear Second Order Analysis (10.10.3)

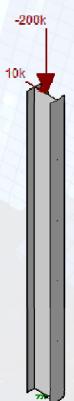
Elastic Second Order Analysis (10.10.4)

Moment Magnification (10.10.5)

> Foreign Codes (CSA, etc.)


Design Gravity Systems
 No P-Delta

2. Design Lateral System P-Delta?


3. Final Design
P-Delta

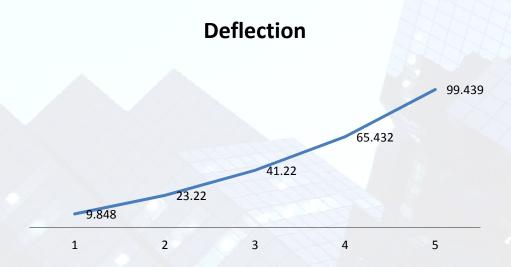
P- Delta Deflection

Strong Axis Bending Deflection		% Change
2nd Iteration:	1.166in	14.20%
3rd Iteration:	1.186in	53.95%
4th Iteration:	1.189in	0.67%
5th Iteration:	1.19in	0.11%

Little P-Delta:

Deflection: 1.226in

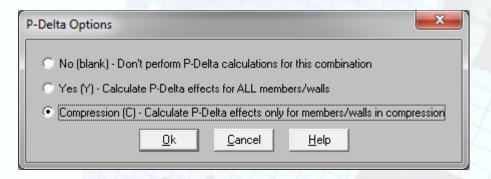
3% Increase

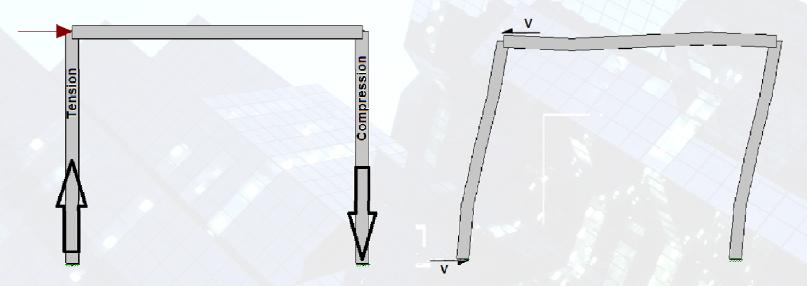

AISC 14th Edition:

Final Deflection: 2.342in **96% Increase**

P-Delta Example

Let's Try the Weak Axis:




Weak Axis Ben	Weak Axis Bending	
Deflection		
1st Iteration:	9.848in	
2nd Iteration:	23.22in	135.78%
3rd Iteration:	41.22in	77.52%
4th Iteration:	65.432in	58.74%
5th Iteration:	99.439in	51.97%

P-Delta Example

The P-Delta effect → increases the flexural stiffness of members in tension

Compression Only

How do we get past a P-Delta Divergence?

- 1. Turn off P-Delta
- 2. Run the model
- 3. Review Deflection
- 4. Review Design Results

- > Instabilities
- > Inadequately sized members
- > Tension/Compression Only Members
- > Stiffness Adjustment (Direct Analysis method)
- > Model Errors

Common P-Delta Problems

Let's review some examples!

Common P-Delta Problems

Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's to our website: www.risa.com

For further information, contact us at: webinar@risatech.com

Presenter: Deborah Penko, P.E.